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Kevin A. Brown

Department of Entertainment (DOE)
Fun Opportunity Announcement (FOA)

Where my passion lies: Halloween Costume Party!

FOA Number: HW2024.10.25-B240
* Event Planning
o Program Development Application Deadline (party date):

* Community Building

Follow-on fun (after party) is available
starting 6:30pm @ ReNEW Westmont

Point of Contact (POC): Kevin B.



Argonne Tokyo Institute of Technology
2019 (Tokyo Tech)

Lfawrence Barcelona
Livermore Digicel, Jamaica Supercomputing Center

National Lab [mobile network co.]
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My Background

No Job Offer - PNNL, USA | English Teacher, Japan | Others
MANY Rejected Papers - Various conferences

Not Selected - Prime Minister Youth Award, Jamaica

No Scholarship for 15t Year Undergrad - Jamaica

Lost Scholarship in Final Year Undergrad —Jamaica

Lost Friendships & Relationships —Jamaica, USA, Japan

Lost Election — Student Union President, University of
Technology, Jamaica

Major Research Mistakes — Too many to count
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Infrastructure Application Goal
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flows = {0: [1, 1: [], 2:[] }
5 for key in change_schedule.keys():

8 | s =
Y iy ys tdf [tdf for k, v in change_schedule[key].items():
i é‘.\ L tdf [tdf o =
te |14 MR
g,

tdf [tdf [’ U LHCLE

tdf [tdf[' tmp = (v/25)%100
myrate = base_rate x (100/tmp)
tdf [tdf[" flows [k].append((key, round(myrate, 6)))

tdf [tdf

print(flows)




Network Topology View

Cray Shasta Cabinet
Exploded View

Network
Switches
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Compute Nodes

Software Stack View

DOE Scientific Applications

IArkouda FLeCSI ||FlexFlow || ExaBiome Imemllmmwllmmx || l Closely

In other projects
& Berkeley |  pc++ [fasdIET] Main
Daeali] [Retavicn uPC I svoiopment
in Pagoda

ooy CASNetEX oy 0 o,

components

Memory Technologies Network Hardware
(Host memory, GPUs, ...) (InfiniBand, Cray Aries, HPE Slingshot, Ethernet, Intel Omni-Path, ...)




Engaging with HPC
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Network Topology




Network Topology

D Router/Switch
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Nodes are not shown.
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erformance Analysis

Count Messages Sent
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Balanced distribution of packets

Total Traffic Per Switch Port
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Router ID

Unexpected traffic pattern across global ports
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Understanding HPC Network Behavior Using
Low-level Metrics

Kevin A. Brown and Robert B. Ross
Mathematics and Computer Science Division, Argonne National Laboratory
kabrown@anl.gov

ABSTRA! DRAGONFLY NETWORKS ADAPTIVE ROUTING

‘Supercomputer systems are complex interconnections of = The 1D Dragonfly [2] is hierarchical network
nodes supported by advanced networking. However, creating topology used by supercomputers
accurate simulation models is an error-prone process that requires - Each router is connected to a set of compute
accurately modeling real-world capabilities without full, complex nodes
technical re-implementations. - Routers are interconnected within logical

To better evaluate network model activities, we use a groups via *local” links

performance refinement process to drill down into routing anomalies = Groups are then interconnected via “global
present in the dragonfly network model of the CODES simulation links
toolkit [1]. This refinement process starts with viewing hlgh level = There are multiple paths between source and
performance data and then iteratively uses k level, ination nodes
specific data to locate the source of the anomaly.

We identify new low-level routing metrics that can expose
the behavior of network model and attach these metrics to packets
flowing through the system. Using these per-packet, per-hop routing
metrics, we effectively attributed anomalies in system-wide traffic o
distribution to the routing algorithm's interaction with network

connectivity configuration. = 'l n u n =

Local links
botween routers.

between groups

Compute nodes
within group omitted

* Progressive adaptive routing (PAR) [3] attempts
to use the fastest path between source and
destination routers

~ The congestion at potential paths is evaluated
at each stop along the packet's journey

- The packet is re-routed along alternative non-
minimal paths when the original paths is more
congested.

Intermediate grot
non-minimal paths.

Minima path
Routing algorithm balances load across
potential paths

EXTENDED ANALYSIS OF ROUTING BEHAVIOR ON DRAGONFLY NETWORK

Environment 72-nodes, 9-group, 36-routers 1D Dragonfly network | Uniform Global Random Traffic
Setup 2 nodesirouter | 4 routersigroup | 25Gbis fink bandwidth | 100% injection load, all nodes involved

Typical High-level Analysis —) Incorporating Component-specific Analysis

* We use a uniform global random traffic = The PAR algorithm decide which port is
Dal}ref"m': favaluat:h PA; routing in C'ODEIS used by a packet leaving each router
= Traf from each node is sent uniformly Ports ma
. y become blocked due to
to all global destinations congestion and cannot send data
= Online port-specific metrics show how well

it Packe Sent by Nod: 2
Cou Rackate Sont by Nodes In'Griie traffic load s balancing across ports

Total Traffic Per Router Port
pors 03 local parts | ports 4591l | pors 67 compute

deswranon
Balanced distribution of

« Performance validation usually focuses
on high-level behaviors, such as network
throughput

Total Effective Netwark Theoughput Global Port Traffic For Router in Group 2

Undesired imbalar

Theoratical

High, stable achieved
5001 throughput

Srapshot tme (m)

041

Srapihot e fol
Port-specific metrics show an anomaly in mi

Everything seems good at the high level;
the traffic pattern caused by routing.

routing is achieving the expected performance.

Vi and von- RRRANE i
paths =T

Simulated by the CODES/ROSS simulation toolkit [1]
Metrics are recorded every 25 microsecond interval

Incorporating Per-packet Analysis and Visualization

= The intermediate group taken by a packet is
recorded in each packet along its journey
~ This marks the non-min. path used

= The load on non-minimal paths is confirmed to be
unbalanced by viewing the path distributions

Count of Packets Using Each Intermediate Group
[Source Group = 2]

For a given destination, a
spocific intermediale groups
are chosen less often.

of Network

Select Non-minimal nd Mlnlmll Paths |
Group 7is 1 n as intermediate for group 8 ),

FINDINGS CONCLUSION NEXT STEPS

= Port- and packet-specific metrics expose that a = Taken alone, high-level metrics may not show
non-minimal path is rarely taken when it shares the anomalies in routing behavior
source router with a minimal path = lteratively refining the analysis approach can
~ The basic PAR algorithm in CODES el Ak
only the loads on min. and non-min. paths

expose
- Component- and packet-specific measurements
should be incorporated in the analysis

. Evaluale larger scale network behaviors
in-situ analytics for online
slreammg of data from the simulation
= Optimize the adaptive routing algorithm in CODES
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» The 2x minimal path bias will cause the non-min. el o reikias s Mange vokiies e o
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path to appear more loaded of data —1ms of activity can generate GBs of data g on G SO 5
hi the Directon Of Computing Research ofthe 1. Department of Energy under Controct No. O€-ACOD OSCH1LS7.
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Quality of Service

Network without QoS

Traffic flow 0

Traffic flow 1

Traffic flow 2

— e

Variation in traffic
load over time

=N

Router port

No isolation; unregulated access to link

-

—

No performance
guarantees

17



Quality of Service

Network with QoS

Router port

Traffic flow 0
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Variation in traffic Isolation across multiple traffic classes; Consistent performance
load over time QoS policy regulates access to link guaranteed

Traffic flow 1

Traffic flow 2

18



Quality of Service

Switch ports

Class O 0

App 1 ] Class 1
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APLYING HPC

Simulating Supercomputer Networks

Packet_send

event
Time Switch 0 events Switch 1 events
5 Packet(A)Arrive* -
Packet_arrive \ 10 Packet(A)Send -
event : 15 - Packet(A)Arrive
) 16 - Packet(C)Arrive*
20 - Packet(A)Send
Packet_send 21 - Packet(C)Send

event

Network model Events in the network model



APLYING HPC

Simulating Supercomputer Networks

Process 0
Time Switch 0 events
5 Packet(A)Arrive*
10 Packet(A)Send

e e = - = - - ———

Network model

Process 1
Time Switch 1 events
15 Packet(A)Arrive
16 Packet(C)Arrive*
20 Packet(A)Send
21 Packet(C)Send

Events in the network model




Teaching and Supporting HPC

SC24 Early Career Program Chair
* Proposing Work

* Reporting Work

* Managing Work

* CareerPaths Panel

CARLA 2025General Co-chair

* Keynotes (NASA, Argonne Lab, etc.)
« HPC/Al workshops, tutorials, et al.
* Exhibitor booth

* Networking events




Promoting HPC

TODAY'S
SUPERCOMPUTER
MODELING &
PREDICTION

EVALUATING AND PREDICTING SUPERCOMPUTER PERFORMANCE

SUPERCOMPUTER
PERFORMANCE ANALYSIS SIMULATION
@% | TODAY NEXT GENERATION
Emerging Goals
scientific
_—_ trends Better_§i[nulation
capabilities

—=—
Applications

New System
Design

Faster, more accurate
climate predictions

Al and Climate rﬂ'l Training Al
Science/ @ models efc.
VEl.wom bomenec? I
P AN .
— Emerging
hardware
006006 m trends
Network and m‘l Router
o3 1
Storage designs efc.

Hardware

OOOOO
New System
Design

Simulation

Al accelerating
scientific breakthroughs

ONONO
Hardware

Using today’s supercomputer to simulate and

design tomorrow’s supercomputers
Argonne & |75

Argonne & 75

For beginners audience

.

>

Supercomputer tour




Argonne Tokyo Institute of Technology
2019 (Tokyo Tech)

Lfawrence Barcelona
Livermore Digicel, Jamaica Supercomputing Center
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Engaging with HPC The Journey

1. It’s OK to not know what
you wantto do

* Itmay not existyet

2. Your path to HPC may not
be linear

3. Your work with HPC may
not be well bounded



~ BILLY

HOW WAS ScHoolL?

HEARD YoU 3IOINED
THE SOCCER TEAM
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