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OUTLINE

• My background and interest in AI for Medicine

• Applying computer vision to digital pathology for Oncology 
applications

• Methods extensions to improve AI for physicians

• Future applications of AI in Medicine
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AI IN MEDICAL PRACTICE
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COMPUTATIONAL PHYSICIAN
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AI Medical Devices: FDA-Approved AI 
Devices Have Grown Rapidly

6Muralidharan V et. al NPJ-DM (2024)
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AI MEDICAL DEVICES: FDA-DESIGNATED 
TROP2 COMPANION DIAGNOSTIC

• Granted FDA Breakthrough Designation 
4/28/2025 

• Required for the device:
• TROP2 algorithm

• Navify Digital Pathology Image Management System

• Roche Digital Pathology scanners (DP 200, DP 600) 

• VENTANA TROP2 (EPR20043) RxDx Assay used 
with OptiView DAB Detection Kit for staining on a 
BenchMark ULTRA IHC/ISH staining instrument
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AI MEDICAL DEVICES: LLM-BASED 
AMBIENT DICTATION FOR ROUTINE USE
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AI MEDICAL DEVICES:
GENERATED MOLECULES IN TRIALS

Google Alphafold; Zhavoronkov Nature Biotech 2019 9

• Interstitial lung disease targeting AI 
generated molecule met it’s primary 
endpoint in Phase II clinical trial
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DEEP LEARNING FOR DIGITAL 
PATHOLOGY
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DIGITAL PATHOLOGY FOR CANCER:
RATIONALE FOR USE
• Manual examination of human tissue is the global cornerstone for 

cancer diagnosis

• Preserved, fixed on glass Hematoxylin and Eosin (H&E) stained 
tissue is evaluated by trained Pathologist physicians to render a 
diagnosis from a tissue sample

• This process has remained largely unchanged for ~100 years

• In medicine, H&E pathology slides are:
• Ubiquitous and globally consistent

• Low cost

• Information rich

• A good place to try applying computer vision!
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Géron, A. (2017). Hands-on machine learning with Scikit-Learn and TensorFlow : O'Reilly Media; Albelwi, S., & Mahmood, A. (2017). A framework for designing the architectures of deep convolutional neural 

networks. Entropy, 19(6), 242; Looking inside neural nets. Retrieved September 2019, from https://ml4a.github.io/ml4a/looking_inside_neural_nets/; Satish Kumar, Analytics Vidhya

Convolutional Neural Network Vision Transformer

ARTIFICIAL INTELLIGENCE ARCHITECTURES  
LEARN TO INTERPRET IMAGES

https://ml4a.github.io/ml4a/looking_inside_neural_nets/
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PEARSON LAB RESEARCH PIPELINE
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• >100TB of imaging data with paired clinical and genomic annotations

• Genetic alterations sorted by “actionability” via OncoKB
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PROCESSING DIGITAL PATHOLOGY 
SAMPLES

Dolezal BMC Bioinformatics 2024 15

www.slideflow.dev
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Reshaping patient care

arXiv:2304.04142

   www.slideflow.dev                    arXiv: 2304.04142   

https://arxiv.org/abs/2304.04142
http://www.slideflow.dev/
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ADAPTABLE PIPELINE FOR CLINICAL 
APPLICATIONS
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Data Set Pipeline Hyperparameters Outcome

Advantages:

• Focused expertise in one aspect of the pipeline

• Allows for parallel, modular development

• Customize the analysis for the appropriate clinical need 
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FOUNDATION MODELS REFLECT 
VAST COMPUTATIONAL EXPOSURE

18Voronstov Nature Medicine 2024
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AI IN DIGITAL PATHOLOGY USE 
CASES
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PRECISION MEDICINE:
Background

• Goal to increase effectiveness and minimize unnecessary 
treatment side effects:

• “The right drug for the right patient at the right time”

• Matching drug to patient in cancer might use diverse 
information:

• Pathological subtype

• Mutation status

• Gene expression profile

• Clinical risk factors

• New types of data or AI models?
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CLINICAL APPLICATION #1: 
Pan-Cancer “Digital NGS” from digital histopathology

Kather et. al. Nature Cancer 2020 21

3/21/2019: Conceptualized pan-cancer deep learning for actionable alterations
11/8/2019: Posted BioRXiv Pre-print
4/17/2020: Manuscript Accepted in Nature Cancer DOI: 10.1101/833756

• Next generation 

sequencing 

(NGS) is costly 

and time 

consuming?

• Can we predict 

actionable 

mutations directly 

from pathology? 

• Trained models 

of every OncoKB 

actionable 

cancer alteration 

in >4000 pts.

• Model performance 

improves with access 

to more data: 

https://doi.org/10.1101/833756
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CLINICAL APPLICATION #2: 
Cancer progression prediction in OPL

EXTERNAL VALIDATION 

AUROC = 0.905, a Highly specific rule-in test?

Performance exceeds human grading
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CLINCIAL APPLICTAION #2:
Selecting Topical Chemo Candidates

NCT05893888; Goldberg M Nature Communications 2022 23

• PRV111 is a cisplatin-embedded 
nanoparticle emitting patch

• Reverses dysplasia in 4NQO 
murine models

• Now in active Phase 1/2 trial at 
UChicago for CIS
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EXTENSIONS FOR COMPUTER VISION TO 
AID COMPUTATIONAL ONCOLOGISTS
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TRUSTWORTHY DIAGNOSTICS: 
Explainable AI

• Many neural 
networks are not 
inherently 
explainable

• Can we trust the 
results of an 
algorithm enough to 
make an important 
clinical decision for 
patient care?

Ribiero et. al. arXiv:1602.04938 25
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MULTI-SITE DL MODELS ARE SUSCEPTIBLE 
TO IMBALANCE BIAS

Howard et. al. Nature Communications 2022 26

• AI models for cancer 
require the underlying 
data to be accurate 
reflections of reality.
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TRUSTWORTHY DIAGNOSTICS: 
Generative AI Explanations 

AI based 
generative 
imaging can 
create images 
with enough 
information to 
train human 
pathologists
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TRUSTWORTHY DIAGNOSTICS: 
Excluding Non-Trustworthy Predictions

Dolezal et. at. Nature Communications 2022 28
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TRUSTWORTHY DIAGNOSTICS: 
Excluding Non-Trustworthy Predictions

Dolezal et. at. Nature Communications 2022 29

Lung cancer 

adenocarcinoma 

vs. squamous cell 

carcinoma
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TRUSTWORTHY DIAGNOSTICS:
Uncertainty Quantification in Real Time
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MULTI-MODAL DATA:
Improving Clinical Utility
• The promise of multi-modal data:

• A single clinical tool that obtains higher performance using two data types is more 
valuable than 2 clinical tools each using a single data type

Boehm K et. al. Nature Cancer 2022; . Howard F et. al. NPJ Breast Cancer 2023 31

…but only if the cost and time of the tool are 
not worse in the real worldSerous Ovarian Cancer Risk 

stratification is improved with 
more data modes

Breast Cancer recurrence 
prediction is improved with  

more data modes
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MULTI-MODAL DATA:
Jointly Embedding Multiple Data Types

In Press at Science Advances; BioRXiv: 10.1101/2024.03.22.586306 32

Original Digital Slides

Synthetic Digital Slides

Built from Pathology 

FM Features

Synthetic Digital Slides

Built from Radiology 

FM Features



@Lab_Pearson@Lab_Pearson

LOCALLY-PRODUCED OPEN-
SOURCE LOW-COST DEPLOYMENT 

Choudhury D, eBioMedicine 2024 33
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DIGITAL PATHOLOGY FOR RAPID 
DIAGNOSTICS

34

(Near) Real-Time AI Deployment
• Hardware: Grundium
• Software: Grundium API, SlideFlow Studio (OS)

• Dolezal J, BMC Bioinformatics 2024
• Model: Vision Transformer MSI prediction (OS) 

• Wagner SJ, Cancer Cell 2023
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FUTURE AI: QML FOR MEDICINE

35
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QUANTUM COMPUTING 
ADVANATGES AND DISADVANTAGES

• Quantum properties can lead to 
exponential gains in computing 
efficiency for some applications

Ramesh S et. al., Nature Cancer (2024)
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QUANTUM COMPUTING EXAMPLE:
Q4Bio Phase 3 Grant Concept

• Multi-modal 
cancer data is:

• Expensive

• Complexly 
correlated

• Benefitted if 
sparce 
explanations 
can be 
generated

Ramesh S et. al. AACR Annual Meeting 2025, Abstract 5020 37
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AI-COMPATIBLE MEDICAL CARE:
UCHICAGO APPROACH TO CLINICAL AI
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CENTER FOR CLINICAL AI:
Mission and Vision
• Mission: Consolidate medical AI expertise and 

resources to promote collaboration, research 
development, and AI-informed patient care

• Vision: The University of Chicago Medical Center and 
Biological Sciences Division fully leverages the world 
class AI and Data Science resources of the University to 
provide cutting edge clinical care and pursue 
transformative research
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ORGANIZATIONAL DESIGN

Based on Kochanny et al, Cancer 2019 40

Human Resources

(Faculty, Staff, and Collaborators)

Expertise and Training Resources

Software and Data Resources

Hardware Resources

Center
Medicine
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HARDWARE RESOURCES

• 4 desktop development 
workstations

• 12x A100s in 2 nodes

• Liquid cooled 8x GH200 

• 250TB super-fast 
storage server
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DIGITAL DATA ON PATIENT MEDICAL 
JOURNEY

Patient Trajectory

• A patient’s medical journey through time generates significant and varied digital health data

• The CCMCAI has brought together experts in each of these data domains to better process 

and understand human health trajectories
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MODE-SPECIFIC INFORMATION 
EXTRACTION FOR HEALTH DATA

43
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Samantha Riesenfeld, PhD
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Will Parker, MD PhD
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Wearables DataNabil Mir, MBBS



HEAD NECK PROGRAM: VISION FOR DIGITAL MEDICINE

44CONFIDENTIAL AND PRIVILEGED
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Ambient Summary 
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Automated Documentation
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ct-DNA

Adaptive
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Hybrid Physical-Digital Biomarker Data Repository
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Capture for Future AI-
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TRAINING RESOURCES

• AI in BioMedicine Journal Club
• Weekly open journal club for methods and 

applications

• Thursdays 1-2PM in W632

• Facilitate DSI, Argonne, TTIC collaborations:
• Working to expand training opportunities

• Multiple AI for healthcare data courses 
available or in development

45

https://biomedai.bsd.uchicago.edu/journalclub/
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TRAINING RESOURCES:
International Dissemination

• NIH Sponsored “Train the 
Trainer” UE5 grant for building 
AI for Medicine readiness in 
Africa

• 1st Cohort now completed 
training

46
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