
1

Parallel
Programming
Concepts

2025 HPC Bootcamp Rebecca Hartman-Baker, PhD
NERSC User Engagement Group

August 12, 2025

2

All About Me

● User Engagement Group (UEG) Lead, NERSC
● World-famous violinist†

● Enthusiastic picker of fruits
● Mom to Vinny (18) & Elena (10)
● Kentucky native, former Illinoisan,

honorary Aussie
● Algorithm enthusiast
● PhD, Computer Science, University of Illinois at Urbana-Champaign

† Slight exaggeration; I have played publicly in 3 countries on 2 continents

Rebecca Hartman-Baker

3

Outline

I. Let’s talk parallel!
II. Supercomputer architecture

III. Designing parallel algorithms
IV. Calculating pi in parallel

4

I. Let’s talk parallel!

5

What Is Parallelism?

Parallelism is the ability to perform more than one
task at the same time
● Why is this useful?

○ We can get more done in the same amount of time
(or less time)

● For example, if I want to amuse everyone in
this room, I can
○ Tell a joke to each person, one by one; or
○ Tell a joke while standing at the podium

● Which would achieve maximal laughs per effort?

6

Parallelism Is Applicable in Daily Life, Too!

● Applies to any processes that you want to be more efficient at doing
● E.g., doing 7 loads of laundry per week

○ Every day, you could run a load in the
washer while you vacuum the house. Then
you could shift it to the dryer while folding
and putting away the previous load.

○ Weekly, you could take all your laundry to
the laundromat, and use 7 washing
machines, then 7 dryers, in parallel.

● Both the above examples employ parallelism to increase efficiency

7

Not Everything Is Parallelizable!

● Parallelizable tasks can be done in any order, because there are no
dependencies between tasks
○ For example, washing towels or jeans first does not change the outcome

● On the other hand, some processes must proceed in a particular
order due to dependencies
○ For example, you must wash your clothes,

then dry them, then fold them;
any other order makes no sense!

○ These are known as sequential tasks

8

Thinking about Parallelization: Making Dinner

● We’re making dinner tonight!
● Our menu: homemade lasagna, salad, and garlic bread
● Which tasks are parallel, and which tasks are sequential?

9

Parallelization of Lasagna

Tasks:

A. Make sauce
B. Grate cheese
C. Cook noodles
D. Assemble lasagna
E. Bake lasagna

Which tasks are sequential, and which are parallel?

A B
C

D
E

10

Parallelization of Salad & Garlic Bread

Salad:

● Wash lettuce
● Cut up lettuce
● Wash vegetables
● Cut up vegetables
● Mix lettuce & vegetables
● Dress salad

Garlic bread:

● Cut loaf into slices
● Prepare garlic butter
● Spread garlic butter on slices
● Bake garlic bread

Which tasks are sequential, and which are parallel?

11

Sequential & Parallel Cooking Tasks

Sequential

● Lasagna: make sauce, then
assemble lasagna, then bake
lasagna

● Salad: wash veggies, then cut up
veggies, then mix salad, then dress
salad

● Garlic bread: cut bread, then
spread garlic butter, then bake
garlic bread

● Entire dinner: cook all foods, then
eat them

Parallel

● Lasagna: make sauce and grate
cheese and cook noodles

● Salad: wash lettuce and wash
veggies; cut up lettuce and cut
up veggies

● Garlic bread: cut bread and
prepare garlic butter

● Entire dinner: making lasagna
and making salad and making
garlic bread and setting the table

12

Serial vs Parallel: Graph of Making Dinner

13

Serial vs Parallel: Graph of Making Dinner

Synchronization
Points

14

Parallelizing Dinner Preparation

● Add more chefs who can perform parallel tasks simultaneously
● Cook twice as much food, thereby feeding more people (or the same

number of people for longer)
● Create a dinner factory, with specialist chefs cooking lasagna, salad,

garlic bread

15

Discussion: Jigsaw Puzzle

● Suppose we want to do a large, N-piece jigsaw
puzzle (e.g., N = 10,000 pieces)

● Assume that the time for one person to complete
a puzzle is T hours
○ (Also assume that all people can do puzzles at

the same rate)
● How can we decrease walltime to completion?

○ (Literally, the amount of time elapsing on the
clock on the wall)

16

The Challenge

17

Parallelizing a Jigsaw Puzzle

Suppose we recruited a friend to help, and now we have 2 people sitting
at the table

● How long would it take 2 people to complete the puzzle?
○ Is there anything that would make it take longer than expected?
○ Are there any conditions that are different with 2 people vs only one

person?
○ Is there anything that we have to do when there are 2 people at the table

that we don’t have to do with only one person?
● How long would it take p people at the table to complete the puzzle,

where p = 4, 8, …5,000 ?

18

Parallel, but Not Always Pleasingly Parallel…

● In the majority of cases, additional overhead is introduced by
parallelizing an algorithm
○ Extra setup steps
○ Resource contention
○ Communication

● The overhead introduced limits the efficiency of the algorithm
○ In the limit, our computation takes no time, but we still have this overhead

● Algorithms that can be parallelized with very little (or no) overhead are
called “embarrassingly parallel” or “pleasingly parallel”

19

Parallelizing a Jigsaw Puzzle, COVID Edition

Suppose I set up p tables for p people and put N/p pieces on each table?
(Assume that the pieces are pre-sorted so each table has only adjacent
pieces.)

● How long would it take p people to complete the puzzle?
● What overhead would make it take longer than T/p hours?

20

Distributed Parallelism, Hands-On!

● My advent calendar puzzle is designed for doing 1/24th of the puzzle
each day

● Each group gets one day’s puzzle, parallelizing at their table to
complete their section

● The complete puzzle is distributed across teams
● Does this simulation live up to our predictions?
● What is the most difficult part of completing this puzzle?

21

II. Supercomputer Architecture

22

II. Supercomputer Architecture
● What is a supercomputer?
● Conceptual overview of architecture

Cray 1
(1976)

IBM Blue
Gene
(2005)

Cray XT5
(2009)

HPE-Cray Shasta
Architecture (2021)

Future HPC Architecture
(2029-???)

23

What Is a Supercomputer?

“The biggest, fastest computer right this minute.” – Henry Neeman

● Identifying a supercomputer
○ Generally, at least 100 times more powerful than current PC

● This field of study known as supercomputing, high-performance
computing (HPC), or scientific computing

● Scientists utilize supercomputers to solve complex problems that
often can’t be solved in other ways
○ Really hard problems need really LARGE (super)computers

24

Supercomputing Architectures
● Symmetric Multiprocessing (SMP) Architecture

○ Multiple processors or compute cores share a single memory
space in common

○ Ideal for parallelizing loops and array operations
○ Use threading (OpenMP, Pthreads) for compute processes

● Massively Parallel Processing (MPP) Architecture
○ Many processors, each with their own memory space, perform

computations; communications (when needed) across network
○ Ideal for parallelizing independent tasks with little or no overlap
○ Use MPI (Message Passing Interface) for compute processes

● Cluster Architecture
○ Connecting multiple standalone compute systems together to

work together
○ Standard strategy for building supercomputers today

25

Puzzling through Supercomputing Architectures

● Jigsaw puzzle = “computations”
● People = processors
● Table = memory

● Everyone at the same table = SMP architecture
● Everyone distributed across tables = MPP architecture
● Tables of groups of people = Cluster architecture

26

State-of-the-Art Architectures: CPU Clusters

● Typical CPU-based supercomputers are built as a cluster of
O(100-10,000) nodes (each node comparable to a state-of-the-art
workstation)
○ Within a node: SMP architecture

■ Many cores within the CPU(s), sharing a common bank of memory (typically
100s of GB)

○ System scale: MPP architecture
■ Nodes each have their own memory, inaccessible to other nodes
■ Nodes connected to each other with a fast network (but network

communication is slow compared to computation speed)

27

State-of-the-Art Architectures: GPU Clusters

● Typical GPU-based supercomputers are also built as a cluster of
O(100-10,000) nodes (each node comparable to a state-of-the-art
workstation)
○ Within a node: typically one CPU and one or more GPUs

■ The CPU is similar to the CPU cluster – multiple cores, sharing memory
■ The GPU has its own separate memory and an interconnect connecting it to

the node’s CPU
○ System scale: MPP architecture

■ Each node has its own memory footprint and nodes are connected to each
other with a fast network

28

NERSC Systems Ecosystem

100 GB/s

5 GB/s

 edge services
2 x 400 Gb/s
2 x 100 Gb/s

50 GB/s
HPSS Tape Archive ~300 PB

35 PB
All-Flash
Scratch

>5 TB/s

1.6 TB/s Common File System 130 PB

/home 450 TB

Experimental Facility ASCR Facility Home Institution Cloud Edge

Off-Platform Storage

DTNs, Gateways
1,792 GPU-accelerated nodes
4 NVIDIA A100 GPUs+1 AMD “Milan” CPU
448 TB (CPU) + 320 TB (GPU) memory

3,072 CPU-only nodes
2 AMD “Milan” CPUs
1,536 TB CPU memory

HPE Slingshot 11 interconnect
4 NICs/GPU node,
1 NIC/CPU node

#8, 93.8PF Peak

Ethernet
Science Friendly

Security
Production Monitoring

Power Efficiency

LAN

29

30

III. Designing Parallel Algorithms

31

What Is an Algorithm?

● “[A] process or set of rules to be followed in calculations or
other problem-solving operations, esp. by a computer: a
basic algorithm for division.”

● A finite set of rules that precisely defines a sequence of operations
● A set of operations that can be simulated by a Turing-complete

system
○ (Most programming languages, including C/C++/Fortran/Python, are

Turing complete)
● Algorithms are a deep and rich topic that you could spend multiple

lifetimes learning about!

32

Considerations for Parallelizing an Algorithm

● Complexity: how does the time to solution grow as a function of problem size?
○ For a problem of size n, does it grow linearly, quadratically (O(n2)), exponentially (O(2n))...?
○ Some algorithms with higher complexity may be more parallelizable (and therefore more

feasible at large problem sizes)
● Dependencies: are there components in the algorithm that depend on other

components?
○ Data dependencies, e.g., need value of f(x±Δx) to compute f(x)
○ Sequential dependencies, e.g., need data from step j before starting step j+1
○ Algorithmic dependencies, e.g., need to complete subroutine before proceeding to next

instruction
● Performance: how does the algorithm perform on idealized problems (lower bound) or

on adversary-selected problems (upper bound)? What can parallelism do for you?

33

Algorithm for Parallelizing Algorithms: PCAM

● Partition: Decompose the problem into fine-grained tasks to
maximize the potential for parallelism

● Communication: Determine the communication pattern among tasks
● Agglomeration: Combine into coarser-grained tasks, if necessary, to

reduce communication requirements or other costs
● Mapping: Assign tasks to compute processes (e.g., MPI processes or

threads), subject to the tradeoff between communication cost and
concurrency

34

Step 1: Partition

● Find the finest-grained tasks in the algorithm
○ Don’t worry about practicality at this point

● Common strategies:
○ Domain decomposition: subdivide geometric domain
○ Functional decomposition: subdivide system into components
○ Independent tasks: divide into embarrassingly parallel tasks
○ Array parallelism: simultaneous operations on array entries
○ Divide-and-conquer: recursively divide into tree-like hierarchy of

subproblems
○ Pipelining: break problem into sequence of stages for each object in

sequence

35

Step 2: Communication

● Determine the communication pattern among tasks
● Sometimes helpful to draw a graph with tasks for nodes and

communications for edges
● Dependencies and synchronization points mean communication
● Watch out for obvious manager-worker patterns and other

bottlenecks, and figure out whether they can be eliminated

36

Step 3: Agglomeration

● Combine into coarser-grained tasks, if necessary, to reduce
communication requirements or other costs

● Agglomerate dependencies to improve parallelism, while keeping an
eye on load balancing

● Larger tasks can reduce communication but may also reduce potential
concurrency

37

Step 4: Mapping

● Assign tasks to compute processes, subject to the tradeoff between
communication cost and concurrency
○ How will mapping impact the algorithm’s performance at various process

and problem sizes?
○ Can you exploit the structure of the problem for mapping?
○ Sometimes random mapping performs better than structured mapping, by

avoiding communication hotspots

38

IV. Computing π

39

Computing π

● We want to compute π
● One method: Method of Darts†

● Based on the principle that the
ratio of the area of a square to
the area of an inscribed circle is
proportional to π

“Picycle” by Tang Yau Hoong, from
http://www.flickr.com/photos/tangyauhoong/5
609933651/sizes/o/in/photostream/

†This is a TERRIBLE way to compute pi!
Don’t do this in real life!!! (See Appendix
for better ways)

http://www.flickr.com/photos/tangyauhoong/5609933651/sizes/o/in/photostream/
http://www.flickr.com/photos/tangyauhoong/5609933651/sizes/o/in/photostream/

40

Method of Darts

● Imagine a dartboard of radius R
inscribed within a square

● Area of circle = π R2

● Area of square = (2R)2 = 4 R2

● Area of circle =
Area of square

“Dartboard” by AndyRobertsPhotos, from
http://www.flickr.com/photos/aroberts/290
7670014/sizes/o/in/photostream/

http://www.flickr.com/photos/aroberts/2907670014/sizes/o/in/photostream/
http://www.flickr.com/photos/aroberts/2907670014/sizes/o/in/photostream/

41

Method of Darts: Conceptual Algorithm

● Calculate ratio of areas to determine π
● How do we find the areas?

○ Suppose we threw darts (completely
randomly) at a square with an inscribed
dartboard

○ Count # darts landing within the circle
and total # darts landing within the square

○ The ratio of these numbers gives approximation to π
○ The quality of the approximation increases with the # of darts thrown

■ This algorithm is exponential in complexity: for one additional digit of
precision, we need to throw 100x more darts

42

Parallelizing the Method of Darts

● What tasks must be performed
sequentially?

● What tasks are independent of
each other?

● Applying PCAM

Method of Darts cake in celebration of Pi Day
2009, Rebecca Hartman-Baker

43

Step 1: Partition

“Decompose the problem into fine-grained tasks to maximize the potential
for parallelism”

● Finest grained task: throw of one dart
● Each throw independent of all others
● If we had a huge computer, we could assign one dart throw to each

process

44

Step 2: Communication

“Determine the communication pattern among tasks”

● To calculate π, we need to tally up the results in a centralized location
● Each process throws dart(s) then

sends the results to a manager
process

● This type of algorithm is known as
a “manager/worker algorithm”

45

Step 3: Agglomeration

“Combine into coarser-grained tasks, if necessary, to reduce
communication requirements or other costs”

● To get a good value of π, we will need millions of dart throws
● We don’t have millions of compute processes available
● Furthermore, even if we did, cost of communication would outweigh

the cost of throwing the dart
● Solution: divide up the number of dart throws evenly amongst

compute processes, so each one does a share of the work

46

Step 4: Mapping

“Assign tasks to compute processes, subject to the tradeoff between
communication cost and concurrency”

● This is a manager-worker algorithm as we saw in step 2
● Assign the role of manager to compute process number 0
● Number 0 will receive tallies from all the other processes, and

compute the final value of π
● Every process, including the manager, will perform an equal share of

dart throws

47

Hands-on: Method of Darts in a Jupyter Notebook

● cd $PSCRATCH
● git clone https://github.com/NERSC/Interactive_PiDarts_Examples.git
● cd Interactive_PiDarts_Examples/

48

49

Appendix: Better Ways of Computing π

50

Better Ways of Computing π

● The Method of Darts is a TERRIBLE way to compute π
○ Accuracy proportional to the square root of the number of dart throws

● Many better alternatives:
○ Look it up on the internet, e.g, 100,000 Digits of Pi
○ Compute with the BBP (Bailey-Borwein-Plouffe) formula

● For less accurate computations, try your programming language’s
constant, or quadrature or a power series expansion

http://www.geom.uiuc.edu/~huberty/math5337/groupe/digits.html

51

Resources

52

PCAM Parallel Algorithm Design

● Ian Foster, Designing and Building Parallel Programs
● Michael Heath, Parallel Algorithm Design from CS554, Parallel

Numerical Algorithms, University of Illinois at Urbana-Champaign

https://www.mcs.anl.gov/~itf/dbpp/text/node1.html
https://courses.grainger.illinois.edu/cs554/fa2015/notes/02_design.pdf

