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All About Me

● User Engagement Group (UEG) Lead, NERSC
● World-famous violinist†

● Enthusiastic picker of fruits
● Mom to Vinny (18) & Elena (10)
● Kentucky native, former Illinoisan, 

honorary Aussie
● Algorithm enthusiast
● PhD, Computer Science, University of Illinois at Urbana-Champaign

† Slight exaggeration; I have played publicly in 3 countries on 2 continents

Rebecca Hartman-Baker
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I. Let’s talk parallel!
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What Is Parallelism?

Parallelism is the ability to perform more than one 
task at the same time
● Why is this useful?

○ We can get more done in the same amount of time 
(or less time)

● For example, if I want to amuse everyone in 
this room, I can
○ Tell a joke to each person, one by one; or
○ Tell a joke while standing at the podium

● Which would achieve maximal laughs per effort?
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Parallelism Is Applicable in Daily Life, Too!

● Applies to any processes that you want to be more efficient at doing
● E.g., doing 7 loads of laundry per week

○ Every day, you could run a load in the 
washer while you vacuum the house. Then 
you could shift it to the dryer while folding 
and putting away the previous load.

○ Weekly, you could take all your laundry to 
the laundromat, and use 7 washing 
machines, then 7 dryers, in parallel.

● Both the above examples employ parallelism to increase efficiency
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Not Everything Is Parallelizable!

● Parallelizable tasks can be done in any order, because there are no 
dependencies between tasks
○ For example, washing towels or jeans first does not change the outcome 

● On the other hand, some processes must proceed in a particular 
order due to dependencies
○ For example, you must wash your clothes, 

then dry them, then fold them; 
any other order makes no sense!

○ These are known as sequential tasks
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Thinking about Parallelization: Making Dinner

● We’re making dinner tonight! 
● Our menu: homemade lasagna, salad, and garlic bread
● Which tasks are parallel, and which tasks are sequential?
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Parallelization of Lasagna

Tasks:

A. Make sauce
B. Grate cheese
C. Cook noodles
D. Assemble lasagna
E. Bake lasagna

Which tasks are sequential, and which are parallel?

A B 
C 

D 
E 
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Parallelization of Salad & Garlic Bread

Salad:

● Wash lettuce
● Cut up lettuce
● Wash vegetables
● Cut up vegetables
● Mix lettuce & vegetables
● Dress salad

Garlic bread:

● Cut loaf into slices
● Prepare garlic butter
● Spread garlic butter on slices
● Bake garlic bread

Which tasks are sequential, and which are parallel?
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Sequential & Parallel Cooking Tasks

Sequential

● Lasagna: make sauce, then 
assemble lasagna, then bake 
lasagna

● Salad: wash veggies, then cut up 
veggies, then mix salad, then dress 
salad

● Garlic bread: cut bread, then 
spread garlic butter, then bake 
garlic bread

● Entire dinner: cook all foods, then 
eat them

Parallel

● Lasagna: make sauce and grate 
cheese and cook noodles

● Salad: wash lettuce and wash 
veggies; cut up lettuce and cut 
up veggies

● Garlic bread: cut bread and 
prepare garlic butter

● Entire dinner: making lasagna 
and making salad and making 
garlic bread and setting the table
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Serial vs Parallel: Graph of Making Dinner
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Serial vs Parallel: Graph of Making Dinner

Synchronization 
Points
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Parallelizing Dinner Preparation

● Add more chefs who can perform parallel tasks simultaneously
● Cook twice as much food, thereby feeding more people (or the same 

number of people for longer)
● Create a dinner factory, with specialist chefs cooking lasagna, salad, 

garlic bread
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Discussion: Jigsaw Puzzle

● Suppose we want to do a large, N-piece jigsaw 
puzzle (e.g., N = 10,000 pieces)

● Assume that the time for one person to complete 
a puzzle is T hours
○ (Also assume that all people can do puzzles at 

the same rate)
● How can we decrease walltime to completion?

○ (Literally, the amount of time elapsing on the 
clock on the wall)
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The Challenge
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Parallelizing a Jigsaw Puzzle

Suppose we recruited a friend to help, and now we have 2 people sitting 
at the table

● How long would it take 2 people to complete the puzzle?
○ Is there anything that would make it take longer than expected?
○ Are there any conditions that are different with 2 people vs only one 

person?
○ Is there anything that we have to do when there are 2 people at the table 

that we don’t have to do with only one person?
● How long would it take p people at the table to complete the puzzle, 

where p = 4, 8, …5,000 ?
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Parallel, but Not Always Pleasingly Parallel…

● In the majority of cases, additional overhead is introduced by 
parallelizing an algorithm
○ Extra setup steps
○ Resource contention
○ Communication

● The overhead introduced limits the efficiency of the algorithm
○ In the limit, our computation takes no time, but we still have this overhead

● Algorithms that can be parallelized with very little (or no) overhead are 
called “embarrassingly parallel” or “pleasingly parallel”
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Parallelizing a Jigsaw Puzzle, COVID Edition

Suppose I set up p tables for p people and put N/p pieces on each table? 
(Assume that the pieces are pre-sorted so each table has only adjacent 
pieces.)

● How long would it take p people to complete the puzzle?
● What overhead would make it take longer than T/p hours?



20

Distributed Parallelism, Hands-On!

● My advent calendar puzzle is designed for doing 1/24th of the puzzle 
each day

● Each group gets one day’s puzzle, parallelizing at their table to 
complete their section

● The complete puzzle is distributed across teams
● Does this simulation live up to our predictions?
● What is the most difficult part of completing this puzzle?
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II. Supercomputer Architecture
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II. Supercomputer Architecture
● What is a supercomputer?
● Conceptual overview of architecture

Cray 1 
(1976)

IBM Blue 
Gene 
(2005)

Cray XT5 
(2009)

HPE-Cray Shasta 
Architecture (2021)

Future HPC Architecture 
(2029-???)
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What Is a Supercomputer?

“The biggest, fastest computer right this minute.” – Henry Neeman

● Identifying a supercomputer
○ Generally, at least 100 times more powerful than current PC

● This field of study known as supercomputing, high-performance 
computing (HPC), or scientific computing

● Scientists utilize supercomputers to solve complex problems that 
often can’t be solved in other ways
○ Really hard problems need really LARGE (super)computers
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Supercomputing Architectures
● Symmetric Multiprocessing (SMP) Architecture

○ Multiple processors or compute cores share a single memory 
space in common

○ Ideal for parallelizing loops and array operations
○ Use threading (OpenMP, Pthreads) for compute processes

● Massively Parallel Processing (MPP) Architecture
○ Many processors, each with their own memory space, perform 

computations; communications (when needed) across network
○ Ideal for parallelizing independent tasks with little or no overlap
○ Use MPI (Message Passing Interface) for compute processes

● Cluster Architecture
○ Connecting multiple standalone compute systems together to 

work together
○ Standard strategy for building supercomputers today
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Puzzling through Supercomputing Architectures

● Jigsaw puzzle = “computations”
● People = processors
● Table = memory

● Everyone at the same table = SMP architecture
● Everyone distributed across tables = MPP architecture
● Tables of groups of people = Cluster architecture
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State-of-the-Art Architectures: CPU Clusters

● Typical CPU-based supercomputers are built as a cluster of 
O(100-10,000) nodes (each node comparable to a state-of-the-art 
workstation)
○ Within a node: SMP architecture

■ Many cores within the CPU(s), sharing a common bank of memory (typically 
100s of GB)

○ System scale: MPP architecture
■ Nodes each have their own memory, inaccessible to other nodes
■ Nodes connected to each other with a fast network (but network 

communication is slow compared to computation speed)
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State-of-the-Art Architectures: GPU Clusters

● Typical GPU-based supercomputers are also built as a cluster of 
O(100-10,000) nodes (each node comparable to a state-of-the-art 
workstation)
○ Within a node: typically one CPU and one or more GPUs

■ The CPU is similar to the CPU cluster – multiple cores, sharing memory
■ The GPU has its own separate memory and an interconnect connecting it to 

the node’s CPU
○ System scale: MPP architecture

■ Each node has its own memory footprint and nodes are connected to each 
other with a fast network
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NERSC Systems Ecosystem

100 GB/s

5 GB/s

                  edge services  
2 x 400 Gb/s
2 x 100 Gb/s

50 GB/s
HPSS Tape Archive ~300 PB

35 PB
All-Flash
Scratch

>5 TB/s

1.6 TB/s Common File System 130 PB

/home 450 TB

Experimental Facility ASCR Facility Home Institution Cloud Edge

Off-Platform Storage

DTNs, Gateways
1,792 GPU-accelerated nodes
4 NVIDIA A100 GPUs+1 AMD “Milan” CPU
448 TB (CPU) + 320 TB (GPU) memory

3,072 CPU-only nodes
2 AMD “Milan” CPUs
1,536 TB CPU memory

HPE Slingshot 11 interconnect
4 NICs/GPU node, 
1 NIC/CPU node

#8, 93.8PF Peak

Ethernet 
Science Friendly 

Security
Production Monitoring

Power Efficiency

LAN
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III. Designing Parallel Algorithms
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What Is an Algorithm?

● “[A] process or set of rules to be followed in calculations or 
other problem-solving operations, esp. by a computer: a 
basic algorithm for division.”

● A finite set of rules that precisely defines a sequence of operations
● A set of operations that can be simulated by a Turing-complete 

system
○ (Most programming languages, including C/C++/Fortran/Python, are 

Turing complete)
● Algorithms are a deep and rich topic that you could spend multiple 

lifetimes learning about!
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Considerations for Parallelizing an Algorithm

● Complexity: how does the time to solution grow as a function of problem size?
○ For a problem of size n, does it grow linearly, quadratically (O(n2)), exponentially (O(2n))...?
○ Some algorithms with higher complexity may be more parallelizable (and therefore more 

feasible at large problem sizes)
● Dependencies: are there components in the algorithm that depend on other 

components?
○ Data dependencies, e.g., need value of f(x±Δx) to compute f(x)
○ Sequential dependencies, e.g., need data from step j before starting step j+1
○ Algorithmic dependencies, e.g., need to complete subroutine before proceeding to next 

instruction
● Performance: how does the algorithm perform on idealized problems (lower bound) or 

on adversary-selected problems (upper bound)? What can parallelism do for you?
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Algorithm for Parallelizing Algorithms: PCAM

● Partition: Decompose the problem into fine-grained tasks to 
maximize the potential for parallelism

● Communication: Determine the communication pattern among tasks
● Agglomeration: Combine into coarser-grained tasks, if necessary, to 

reduce communication requirements or other costs
● Mapping: Assign tasks to compute processes (e.g., MPI processes or 

threads), subject to the tradeoff between communication cost and 
concurrency
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Step 1: Partition

● Find the finest-grained tasks in the algorithm
○ Don’t worry about practicality at this point

● Common strategies:
○ Domain decomposition: subdivide geometric domain
○ Functional decomposition: subdivide system into components
○ Independent tasks: divide into embarrassingly parallel tasks
○ Array parallelism: simultaneous operations on array entries
○ Divide-and-conquer: recursively divide into tree-like hierarchy of 

subproblems
○ Pipelining: break problem into sequence of stages for each object in 

sequence
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Step 2: Communication

● Determine the communication pattern among tasks
● Sometimes helpful to draw a graph with tasks for nodes and 

communications for edges
● Dependencies and synchronization points mean communication
● Watch out for obvious manager-worker patterns and other 

bottlenecks, and figure out whether they can be eliminated
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Step 3: Agglomeration

● Combine into coarser-grained tasks, if necessary, to reduce 
communication requirements or other costs

● Agglomerate dependencies to improve parallelism, while keeping an 
eye on load balancing

● Larger tasks can reduce communication but may also reduce potential 
concurrency
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Step 4: Mapping

● Assign tasks to compute processes, subject to the tradeoff between 
communication cost and concurrency
○ How will mapping impact the algorithm’s performance at various process 

and problem sizes?
○ Can you exploit the structure of the problem for mapping? 
○ Sometimes random mapping performs better than structured mapping, by 

avoiding communication hotspots
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IV. Computing π
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Computing π

● We want to compute π
● One method: Method of Darts†

● Based on the principle that the 
ratio of the area of a square to 
the area of an inscribed circle is 
proportional to π

“Picycle” by Tang Yau Hoong, from 
http://www.flickr.com/photos/tangyauhoong/5
609933651/sizes/o/in/photostream/

†This is a TERRIBLE way to compute pi! 
Don’t do this in real life!!! (See Appendix 
for better ways)

http://www.flickr.com/photos/tangyauhoong/5609933651/sizes/o/in/photostream/
http://www.flickr.com/photos/tangyauhoong/5609933651/sizes/o/in/photostream/
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Method of Darts

● Imagine a dartboard of radius R 
inscribed within a square

● Area of circle = π R2

● Area of square = (2R)2 = 4 R2

●  Area of circle =
Area of square

“Dartboard” by AndyRobertsPhotos, from 
http://www.flickr.com/photos/aroberts/290
7670014/sizes/o/in/photostream/

http://www.flickr.com/photos/aroberts/2907670014/sizes/o/in/photostream/
http://www.flickr.com/photos/aroberts/2907670014/sizes/o/in/photostream/
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Method of Darts: Conceptual Algorithm

● Calculate ratio of areas to determine π
● How do we find the areas?

○ Suppose we threw darts (completely 
randomly) at a square with an inscribed
dartboard

○ Count # darts landing within the circle 
and total # darts landing within the square

○ The ratio of these numbers gives approximation to π
○ The quality of the approximation increases with the # of darts thrown

■ This algorithm is exponential in complexity: for one additional digit of 
precision, we need to throw 100x more darts
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Parallelizing the Method of Darts

● What tasks must be performed 
sequentially?

● What tasks are independent of 
each other?

● Applying PCAM

Method of Darts cake in celebration of Pi Day 
2009, Rebecca Hartman-Baker
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Step 1: Partition

“Decompose the problem into fine-grained tasks to maximize the potential 
for parallelism”

● Finest grained task: throw of one dart
● Each throw independent of all others
● If we had a huge computer, we could assign one dart throw to each 

process
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Step 2: Communication

“Determine the communication pattern among tasks”

● To calculate π, we need to tally up the results in a centralized location
● Each process throws dart(s) then 

sends the results to a manager 
process

● This type of algorithm is known as 
a “manager/worker algorithm”
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Step 3: Agglomeration

“Combine into coarser-grained tasks, if necessary, to reduce 
communication requirements or other costs”

● To get a good value of π, we will need millions of dart throws
● We don’t have millions of compute processes available
● Furthermore, even if we did, cost of communication would outweigh 

the cost of throwing the dart
● Solution: divide up the number of dart throws evenly amongst 

compute processes, so each one does a share of the work
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Step 4: Mapping

“Assign tasks to compute processes, subject to the tradeoff between 
communication cost and concurrency”

● This is a manager-worker algorithm as we saw in step 2
● Assign the role of manager to compute process number 0
● Number 0 will receive tallies from all the other processes, and 

compute the final value of π
● Every process, including the manager, will perform an equal share of 

dart throws



47

Hands-on: Method of Darts in a Jupyter Notebook

● cd $PSCRATCH
● git clone https://github.com/NERSC/Interactive_PiDarts_Examples.git
● cd Interactive_PiDarts_Examples/
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Appendix: Better Ways of Computing π
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Better Ways of Computing π

● The Method of Darts is a TERRIBLE way to compute π
○ Accuracy proportional to the square root of the number of dart throws

● Many better alternatives:
○ Look it up on the internet, e.g, 100,000 Digits of Pi
○ Compute with the BBP (Bailey-Borwein-Plouffe) formula

● For less accurate computations, try your programming language’s 
constant, or quadrature or a power series expansion

http://www.geom.uiuc.edu/~huberty/math5337/groupe/digits.html
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Resources
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PCAM Parallel Algorithm Design

● Ian Foster, Designing and Building Parallel Programs
● Michael Heath, Parallel Algorithm Design from CS554, Parallel 

Numerical Algorithms, University of Illinois at Urbana-Champaign

https://www.mcs.anl.gov/~itf/dbpp/text/node1.html
https://courses.grainger.illinois.edu/cs554/fa2015/notes/02_design.pdf

